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Preface

This volume contains the emerging trends papers of Calculemus 2010. Calcule-
mus 2010 was the 17th Symposium on the Integration of Symbolic Compu-
tation and Mechanised Reasoning, dedicated to the combination of computer
algebra systems and automated deduction systems. As in 2008 and 2009, Cal-
culemus 2010 was colocated with the 10th International Conference on Artificial
Intelligence and Symbolic Computation (AISC 2010) and the 9th International
Conference on Mathematical Knowledge Management (MKM 2010), under the
umbrella of the Conferences on Intelligent Computer Mathematics (CICM 2010),
organized by Renaud Rioboo and Laurence Rideau. All three conferences are
thus concerned with providing intelligent computer mathematics. Although the
conferences have separate communities and separate foci, there is a significant
overlap of interest in building systems for intelligent computer mathematics.
In 2010, the 3rd edition of CICM was held in Paris at the Conservatoire Na-
tional des Arts et Métiers (CNAM) from July 5 to July 10, 2010.

There were 3 submissions. Each submission was reviewed by 2 programme
committee members. The programme committee decided to accept 2 papers
for publication in the emerging trends proceedings of Calculemus 2010, and to
propose the last paper to be included in the proceedings of the 4th Workshop on
Programming Languages for Mechanized Mathematics Systems (PLMMS 2010),
which was also part of CICM 2010.

In the preparation of these proceedings and in managing the whole discussion
process, Andrei Voronkov’s EasyChair conference management system proved
itself an excellent tool.

June 2010 David Delahaye
Renaud Rioboo
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What are the rules of “elementary algebra”?

James H. Davenport1 and Christopher J. Sangwin2

1 Department of Computer Science
University of Bath, Bath BA2 7AY, United Kingdom

J.H.Davenport@bath.ac.uk
2 Maths Stats & OR Network, School of Mathematics

Birmingham, B15 2TT, United Kingdom
C.J.Sangwin@bham.ac.uk

Abstract. Many systems dealing with mathematics, including but not
limited to computer-aided assessment (CAA) software, have to deal with
“equality up to the usual rules of algebra”, but what this phrase means is
often less clear. Even when they are clear in abstract, implementing them
in a computer algebra system, which has to deal with the mathematics
users have typed, complete with complications such as division (rather
than multiplication by the inverse), binary subtraction etc., is far from
clear. In this paper, we outline some pitfalls, and what we have learned
about solving these problems.

Many systems dealing with mathematics, including but not limited to computer-
aided assessment (CAA) software, have to deal with “equality up to the usual
rules of algebra”, but what this phrase means is often less clear, and depends
on context. Our focus, as in [3], is on that variety of computer-aided assessment
in which we ask “has the user got ‘the right answer’?”. If not, how many marks
should we give, and how can we provide effective feedback, for a near miss? In
order to answer the first question, we need to define equality with ‘the right
answer’. In this paper we identify various levels of equality, increasing in the
number of objects they will consider equal (except between levels 3 and 4). To
automatically provide feedback to students we often need to identify the levels
between which equality fails to hold for the first time. We note that there is some
ambiguity about reading what the user has entered, e.g. is -x^b really -(x^b)
(normal) or (-x)^b (Excel)? The different decisions made during parser design
mean that even experienced users may well get confused about mathematical
precedence and those brought up using a variety of calculators may carry over
calculator habits. Whatever the parsing precedences used, there is a lot to be
said for showing the user a conventional 2-dimensional representation and asking
“is this what you intended?”, as STACK [11] does.

To make this paper manageable, we will consider only natural number coef-
ficients, as is usual in students’ work at this level. We therefore treat rational
numbers as explicit quotients of integers and do not enter into questions such
as “does 1

2 equal 0.5?”, important though they are. We say “natural numbers”
because traditional mathematical notation is ambiguous about representations
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of negative integers: everyone agrees that −7 is as valid an integer as 7, and also
accepts x − 7 as a polynomial, but, apparently inconsistently, rejects both x7
(which ought to be as valid as x− 7) and x +−7 (which ought to be as valid as
x + 7). We note in passing the very subtle typographic difference in the spacing
of the symbols which LATEX uses here between x − 7 and x−7. The former is a
binary minus, x-7, the latter juxtaposes x with the integer −7, x{-7}, which
could be interpreted as implied multiplication.

We do not explicitly specify the domain of computation, as this is not usually
done at this level. Where this matters it is, we claim, up to the teacher to ensure
that the rules are relevant to the domain.

These “usual rules of algebra” would normally be described as ‘underlying’ in
the terminology of [3], and therefore two expressions that differed by applications
of these rules would not be regarded as ‘different’ from the point of view of
Computer-Aided Assessment. Although we do not wish to push the analogy too
far, we believe that “equality up to the usual rules of algebra” can be regarded
as asking for equality at the level of some “deep structure” that underlies the
“surface structure” of traditional computer-science parsing, which is the case of
+ and * only, is given by level 6 in the next section. As [3] points out, one might
also wish to be more relaxed about what forms of expression are to be considered
as equal, and we will illustrate some opportunities for this.

One example of this is given in [7], who define3

Expr = Nat Integer | Var String | Negate Expr
Expr :+:Expr | Expr :*:Expr | Expr :-:Expr | Expr :/:Expr

Their context is slightly different, being focused on “interactive exercise assis-
tants”, rather than the ‘marking’ context of [3, 11]. We compare the two ap-
proaches in section 7.

If it were not for the Negate, :-: and :/: clauses, equality of terms “in the
sense of elementary algebra”, is precisely equality of terms modulo associativity
and commutativity (but not distributivity) of :+: and :*:, and this a well-
studied, and much implemented topic. Level 6 below corresponds to a canonical
form for associative–commutative representations.

1 Addition and Multiplication

Let us first consider expressions built with just addition and multiplication.
There are various levels of equality here. We start by considering raw strings, as
typed by the student, then move to the parse trees these strings represent.

1. Textual identity. Here x+ y and x+y are considered different because of the
space. Similarly x+10 and x+010 are different because of the leading zero4.

3 They use :+: etc. to denote the syntactic operators, as entered by the user.
4 We ignore C’s rule that a leading 0 implies octal!
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2. Equality after lexical analysis. This would consider the above examples the
same, but would distinguish x+y*z from x+(y*z) because of the extra paren-
theses.

3. Equality as binary parse trees. This would consider x+y*z and x+(y*z) as
the same, both being the tree

+
↙ ↘

x ∗
↙ ↘

y z

.

However, this interpretation would distinguish x+(y+z) from (x+y)+z, being
respectively the trees

+
↙ ↘

x +
↙ ↘

y z

and

+
↙ ↘

+ z
↙ ↘

x y

. (1)

Being based on binary parse trees, it requires an operator precedence rule
(is + left-associative or right-associative) to decide which of these becomes
the representation of x+y+z.

4. We can avoid this if we allow n-ary trees, parsing x+y+z as

+
↙ ↓ ↘

x y z
, (2)

but this is now a third tree, different from the two trees in (1).
5. We can avoid this problem if we flatten5 the associative operators + and *,

which would transform both the trees in (1) into the tree in (2). While there
are other ways of handling associativity, e.g. by rotating the second tree in
(1) into the first, they do not differ fundamentally, and this is the one which
generalises naturally.

6. It is customary to believe that “the rules of elementary algebra” include the
facts that + and × are commutative, as well as associative. In the formalism
of level 5 above, this is easy to handle: we merely say that the children of
a + (or *) node are compared as (multi)sets6, rather than as lists, so now

5 Such flattening is explicitly prohibited in some programming languages, such as
Fortran [1], but then the + of floating point arithmetic is not associative.

6 We say multisets, since x+x+x is different from x+x. In a pedagogical application, of
course, we would expect to see 3x etc., but nevertheless we must maintain the dis-
tinction. In the terminology of [3], writing x+x+x for 3x would normally be considered
as a venial error, whereas writing x+x for 3x is a fundamental one.
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the tree in (2) has the same children, admittedly in a different order, as the
trees

+
↙ ↓ ↘

x z y
and

+
↙ ↓ ↘

z y x
, (3)

and three others. We note the necessity of doing this multiset-wise compar-
ison recursively, to ensure that

+
↙ ↘

x ∗
↙ ↘

y z

and

+
↙ ↘
∗ x

↙ ↘
z y

(4)

are regarded as equal.

Beyond this we are in the realm of computer algebra, rather than syntactic ma-
nipulation. However, even for assessment of elementary expressions this move is
necessary. Otherwise one is left with some kind of equality tester, often proba-
bilistic such as [12, 13], as refined in [8], but possibly deterministic [9]. Examples
of this include Maple’s testeq. If we really want an equality test at this level,
systems that act7 radically in the sense of [10] compute a canonical form. Hence
we define three further levels.

7. We remove identity elements: i.e. we remove 0 from the arguments of + and
1 from the arguments of ×. Where necessary, we flatten to remove operations
which end up with a single argument. For example

+
↙ ↘

x 0
⇒

+
↓
x
⇒ x.

Pairs of I symbols, defined in Section 3, are removed until at most one may
appear among the arguments of ×, and pairs of R symbols are removed, as
discussed after (13).

8. We combine all numerical terms in the arguments of + and ×, and (for the
sake of user presentation) order the result so that any number appears first
for × and last for +.

9. We apply the distributive law (of multiplication over addition).

Depending on the precise application, and the definition being adopted of “ob-
viously equal”, somewhere at or between levels 6 and 9 lies a system that gets
many examples “right”, in the sense that the user is not upset that the system
refuses to recognise as equal expressions in + and * that are “obviously equal”.

However, the grammar of even elementary algebra is larger than this, and
includes − (in both unary and binary forms) and /. Practically any system for
7 [10] talks about “radical systems”, but most systems which can behave conserva-

tively, such as Macsyma and Reduce, have options not to.
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processing mathematics has to deal with these, and their impact on the problem
of “equality modulo the usual rules of elementary algebra”. It might be thought
that / and (binary) - posed the same problems, being the inverse operations to
* and + respectively, but in fact that is not quite the case, as the unary operators
behave differently.

2 Subtraction

Here we have both unary and binary -. It would seem that the informal rules
of understanding mathematics make the transformation a-b→a+(-b) at a very
early stage in our mental processing. Hence the expression a-b-c is thought of
as a+(-b)+(-c), and hence, in levels 4 and beyond, this would become the tree

+
↙ ↓ ↘

a − −
↓ ↓
b c

. (5)

Level 6 would then regard this as equal to the tree from a-c-b, which few would
disagree with. It would, however, also regard this as equal to the expression
-b+a-c. Logically, one cannot object to this, but nonetheless we “tend to prefer”
one of the other forms. Convention urges minimality here, since the other forms
require one fewer signs. While a notion of “simplification” can be based on
minimality, as in [4], it is harder to make an argument based on “the laws of
algebra”.

3 Negation in Parse Trees

So far we have followed a relatively standard approach to parsing, regarding
unary − as a separate operator in our parse trees, even at level 9. In practice,
this will not do, so we then have to decide whether -x*y represents

-(x*y)
−
↓
∗

↙ ↘
x y

or

(-x)*y
∗

↙ ↘
− y
↓
x

. (6)

However, the typical user of mathematics would say that these are equal, by
“the usual rules of algebra”, and would object to being forced to distinguish.
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We therefore propose8 replacing “unary minus” by multiplication by a special
token, hereafter I. Hence -(x*y), (-x)*y and x*(-y) become the trees

∗
↙ ↘
I ∗

↙ ↘
x y

,

∗
↙ ↘
∗ y

↙ ↘
I x

and

∗
↙ ↘

x ∗
↙ ↘
I y

(7)

respectively. In the presence of flattening and commutativity of *, these trees
are regarded as equal. What about (-x)*(-y)? This corresponds to the tree

∗
↙ ↘

↙ ↘
∗ ∗

↙ ↘ ↙ ↘
I x I y

, (8)

which is equivalent to the tree from -(-(x*y)) and many other variants with
(multi)set of children {I, I, x, y}, but not equivalent to the tree from x*y until
we get to level 7.

Algebraically I behaves like −1, but is distinguished from it at this level so
as not to be confused with an explicit −1 entered by the user, i.e. -x*y versus
x*(-1)*y:

∗
↙ ↘
I ∗

↙ ↘
x y

versus

∗
↙ ↘

x ∗
↙ ↘
∗ y

↙ ↘
I 1

, (9)

where the (multi)sets of children of a flattened multiplication operator are {I, x, y}
and {x, I, 1, y} respectively.

This distinction should , we believe, be made at this level, where we claim
that level 6 together with I as the interpretation of unary and binary - is the
appropriate “deep structure”. Equally though, the exercise author or equivalent
may add further rules, such as levels 7, 8 and 9 to equate the two, whether with
or without a penalty.

4 Division

Our treatment of division, reduction to the unary case, is similar to that of binary
subtraction, even though the surface representation is different. We consider a
8 And have actually implemented in STACK [11].
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unary reciprocal operator R, and regard x/y as generating the tree

∗
↙ ↘

x R
↓
y

. (10)

We need one further rule, which we will express here in a simple form, and
express more generally in section 5:

“R distributes over multiplication”, i.e.

R
↓
∗

↙ ↘
x y

⇒

∗
↙ ↘

R R
↓ ↓
x y

. (11)

With this addition, and the rules from level 6, all the following generate the tree

∗
↙ ↓ ↘

x R R
↓ ↓
y z

: (12)

(x/y)/z, x/y/z and x/(y*z). x/(y/z) generates

∗
↙ ↓ ↘

x R R
↓ ↓
y R

↓
z

, (13)

and it is a good question whether or not this should be simplified by means of
R(R(z))⇒ z. Our suggestion is that it should not at level 6, but that this rule
should be readily available in the toolkit of an exercise writer (e.g. at level 7).

There is one slight complication here, which is the absence of a general no-
tation for R(z), at least until we allow powers and the z^(-1) notation. This
therefore means that we should probably elide

1/y→ R(y) (rather than 1 ∗ R(y)). (14)
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5 Powers

Adding exponentiation, whether just raising to an integer power, or more gener-
ally, complicates matters, and we note that it is not present in [7]. We should first
note that ^ is not associative, and that precedence issues are therefore trickier
here (as indeed they are in computer languages in general). Let us first consider
the case of integer exponents. This may be either explicit integers, or (worse
from our points of view) a set of problems where the integrality is implicit. This
implicitness would be achieved by putting in scope rules that are not vaid in a
more general context.

The first challenge is that the distributive law for exponentiation over mul-
tiplication9 —

(ab)c = acbc (15)
— seems to be viewed differently from the distributive law for multiplication
over addition: we do not regard (xy)2 as better or worse than x2y2. This is
easily implemented as a tree transformation:

^
↙ ↘
∗ z

↙ ↘
x y

⇒

∗
↙ ↘

↙ ↘
^ ^

↙ ↘ ↙ ↘
x z y z

. (16)

Equally, we do not regard
(

x
y

)2

as better or worse than x2

y2 . The transformation
(16) automatically leads to

^
↙ ↘
∗ z

↙ ↘
x R

↓
y

⇒

∗
↙ ↘

↙ ↘
^ ^

↙ ↘ ↙ ↘
x z R z

↓
y

, (17)

but this is not quite what was desired. It is tempting to try to “fix” this by rules
taking R(x)y to R(xy), but our experience is that it is better to “bite the bullet”
and accept that R is really raising to the power −1, and introduce the rules

^
↙ ↘

R z
↓
x

,

R
↓
^

↙ ↘
x z

⇒

^
↙ ↘

x ∗
↙ ↘
I z

. (18)

9 The other distributive law, ab+c = abac, does seem to be in the same camp as the
distributive law for multiplication over addition, and should probably not generally
be applied.
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1/x^(-2) is then represented as xI∗I∗2. It is probably a matter of taste whether
one regards 1/x^(-2) as a clumsy expression which does not deserve to be
simplified, or whether one wishes to work at level 7, in which case I ∗ I ∗ z ⇒ z
(or the pair I ∗ I ⇒ 1 and 1 ∗ z ⇒ z) need to be added to the ruleset.

6 Powers: non-integral exponents

We note that these re-write rules for exponentiation are subtle once we get to
non-integral exponents and that even great thinkers have made mistakes, such
as [5]

§148. Moreover, as
√

a multiplied by
√

b makes
√

ab we shall have
√

6 for
the value of

√
−2 multiplied by

√
−3; and

√
4 or 2, for the value of the

product of
√
−1 and

√
−4. Thus we see that two imaginary numbers,

multiplied together, produce a real, or possible one.
But, on the contrary, a possible number, multiplied by an impossible
number, gives always an imaginary product: thus

√
−3 by

√
+5, gives√

−15.
§149. It is the same with regard to division; for

√
a divided by

√
b making√

a
b , it is evident that

√
−4 divided by

√
−1 will make

√
+4 or 2; that√

+3 divided by
√
−3 will give

√
−1; and that 1 divided by

√
−1 gives√

+1
−1 , or

√
−1; because 1 is equal to

√
+1.

A more detailed discussion of the mathematics underlying these issues is given
by [6]. When it comes to expressions, rather than numbers, (15) is not in general
valid: compare √

1− z
√

1 + z
?=
√

1− z2 (19)

with √
z − 1

√
z + 1 ?=

√
z2 − 1, (20)

where (19) is universally valid, but (20) only on a halfplane. These difficulties are
discussed in [2], where the proofs of validity are fundamentally not of a rewriting
nature.

As an example, consider 1√−4
: we can operate on this parse tree using (18)

then (16) to give

R
↓
^

↙ ↘
∗ R

↙ ↘ ↓
I 4 2

⇒

^
↙ ↘

↙ ↘
∗ ∗

↙ ↘ ↙ ↘
I 4 I R

↓
2

⇒

^
↙ ↘

↙ ↘
∗ ∗

↙ ↘ ↙ ↘
I H 4 H

9



(i.e. (−)−
1
2 × 4−

1
2 ) where H = − 1

2 represents the tree

H :=

∗
↙ ↘
I R

↓
2

.

Further computer algebra rules are required to decide how (−)−
1
2 × 4−

1
2 should

be dealt with.

7 Comparison with [7]

The paper [7] cites five basic assumptions, which we reproduce below (our lay-
out), and comment on (marked C).

1a Associativity of operators is implicit, meaning that a user cannot and should
not distinguish a+(b+c) from(a+b)+c. The system can thus minimize the
use of parentheses in presenting terms.

C Level 5 and later deal with this.
1b Commutativity, on the other hand, should be used with care. We want to

respect the order in which terms appear as much as possible for a better user
experience.10

C This can be achieved by not aggressively re-ordering the multiset of children
of a + or * node.

2 Constant terms are normalized aggressively: the skills to manipulate fractions
and integers are assumed to be present.

C This contrasts with our approach, where we would normally prefer11 the
answer 4 over 2+2. However, adding constant normalisation rules as “under-
lying” rather than “venial” would achieve this goal.

3a The distribution of multiplication over addition (law [M5]) is an explicit step
in the derivation.

C This is essentially the difference between our level 6, which we claim to be
the appropriate “deep structure”, and level 9.

3b Laws to manipulate the sign of a term (laws [N1] up to [N6]) can be per-
formed automatically.
[N1] −(−a) = a
[N2] a− a = 0
[N3] a− b = a + (−b)
[N4] −(a + b) = (−a) + (−b)
[N5] −(a · b) = (−a) · b
[N6] −(a/b) = (−a)/b

10 Recall that they are generating terms, whereas we are not.
11 In the sense that we would mark 2+2 down.
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C [N3], [N5] and [N6] are consequences of our treatment of I: the others could
certainly be added as underlying rules. [N4], in particular, is the equivalent
for I of (11) for R.

It would therefore be reasonable to state that our level 6, augmented by I and
R, and (11), provides a subset of the functionality [7] need, and one which can
be further enhanced to theirs by adding certain rules as ‘underlying’ — rules
that we would probably wish to have as “venial’ in any case.

8 Conclusions

We claim that “equality up to the usual rules of algebra”, for the four operations
of +, -, * and /, can be represented as equality of the deep structures of level 6
(associative–commutative equality for + and *) together with I and R for unary
subtraction and multiplicative inverse. Further rules, such as those posited in
[7], can then be added on top of these if required, but these rules alone suffice
for the purposes of much computer-aided assessment.

If one wishes to add ^, things become more complicated. They become more
complicated pedagogically because they are more complicated mathematically,
principally because fractional powers require multi-valued inverses. This moves
us away from an algebra of simple expressions represented by parse trees. Re-
striction to explicit integer exponents can be dealt with by the mechanisms we
have proposed.
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Interactive Documents as Interfaces to Computer
Algebra Systems: JOBAD and Wolfram|Alpha?

Catalin David, Christoph Lange, Florian Rabe

Computer Science, Jacobs University Bremen,
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Abstract. Interactivity and customization are common trends guiding
the design of services on the web. Not only can users adapt content to
their preferences, they can also dynamically aggregate content from var-
ious sources on interactive pages in their browser that thus turn into
powerful command centers (e. g. iGoogle). Our JOBAD architecture em-
beds mathematical services into XHTML+MathML documents. JOBAD
is a modular JavaScript framework for interactive services such as term
folding or definition lookup.
We have now enhanced it with a client for computer algebra. It lets the
user select mathematical expressions and ask a CAS to compute, graph,
or rewrite them. We have done first steps towards an integration with the
Wolfram|Alpha web service API, which gives access to Mathematica as
well as a large mathematical knowledge base. We are currently working
on a generalization towards arbitrary CAS backends and thus promoting
documents as interfaces to computer algebra systems.

Keywords: Interactive Documents, Computer Algebra Systems, Web Services,
MathML, OpenMath

1 Introduction

Writing and reading mathematics is difficult. Due to its abstract and succinct
notation and the practice of omitting information that can be inferred from
the context, readers — especially if not experts on the subject matter — often
lack knowledge about certain characteristics and properties of the objects under
consideration. Moreover, due to the hierarchic nature of mathematical theories,
many of the terms defined and used in a mathematical document actually depend
on other terms defined elsewhere.

From another point of view, a current development of the Internet is to
provide ever more possibilities for the users to receive data from different sources,
thus overwhelming the user with useless information. We try to cope with this
by setting up intelligent contextual filters that act as interfaces to the raw data.
? We would like to thank Wolfram Research for providing us with a pioneer grant for
accessing the Wolfram|Alpha web service API, and Jan Willem Knopper from the
MathDox team for support in using their translation web service.
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The point where the above two perspectives meet is the JOBAD architec-
ture [13, 9]. Its goal is to facilitate the integration of diverse web services into
mathematical documents — inspired by the Web 2.0 technology of mashups [23,
2]. Our vision of an interactive document is a document that the user can not just
read, but adapt according to his preferences and interests while reading it — not
only by customizing the display of the rendered document in the browser, but
also by changing notations (which requires re-rendering) or retrieving additional
information from services on the web. Consider a student reading lecture notes:
Whenever he is not familiar with a mathematical symbol occurring in some for-
mula, JOBAD enables him to look up its definition without opening another
document, but right in his current reading context. Or consider the problem of
converting between physical units (e. g., imperial vs. SI). Instead of manually
opening a unit converter website and copying numbers into its entry form, we
have enabled an in-place conversion.

JOBAD handles enriched mathematical documents presented on the web, as
a combination of XHTML, RDFa, MathML [28] (for both display and semantics
via Presentation and Content MathML) and OpenMath [3] (as an alternative
language to Content MathML in which the semantic structure of the formulae
is annotated) that are (inter)active and, therefore, customizable. For example,
JOBAD provides services for the user that change the display and the content
of the active document by retrieving additional data from different web services.

We have used JOBAD to enrich the General Computer Science lecture notes
at Jacobs University which are written using sTEX(semantically enhanced TEX),
uploaded to an installation of TNTBase, a versioned XML database [31, 27],
which translates them to OMDoc, and finally to XHTML+MathML+RDFa [7].
The architecture is not constrained to that and can also be used for other pur-
poses. For example, the LATIN project (Logic ATlas and INtegrator) [17], which
aims to use a “logics as theories/translations as morphisms” approach to achieve
the interoperability of both system behavior and represented knowledge (the
Logic Integrator), and to obtain a comprehensive and interconnected network of
formalizations of logics of computational logic systems (the Logic Atlas); see [6]
for the details of the JOBAD integration. Another example in this area can be
given from history: in the beginnings of the 20th century, a group of (mainly)
French mathematicians wrote the basis of set theory and published under the
common pseudonym: Nicolas Bourbaki. But, for this collection of books, there
is no digitized version which would allow the users to explore (e. g. the basis of
set theory) properly.

The JOBAD architecture is modular and easily extensible, which gives other
developers the ability to develop customized service modules for different tasks.
This is where Computer Algebra Systems (CASs) come into the picture. In this
work we present a new JOBAD service that can interact with CASs. Our generic
service is instantiated to connect to Wolfram|Alpha using the Wolfram|Alpha
web service API. Thus JOBAD can provide a lot of background information for
a term or an equation, e. g., we can use it to simplify the selected term, plot it,
or compute solutions to equations.
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2 Related Work

Similarly to JOBAD, the ActiveMath project [1] deals with aggregated documents
which are retrieved from a knowledge base depending on the user’s topics of
interest (what the user wants to learn) and its prerequisites. It is presented as a
platform for learning mathematics in school and university.

MathDox [5] is an XML based format for interactive mathematical docu-
ments which can be transformed to interactive mathematical web pages using
the MathDox Player. MathDox uses OpenMath for semantic representation and
was actually designed, in part, to interact with CASs like Mathematica, Max-
ima and GAP via OpenMath phrasebooks (cf. [3]), so this can be considered as
related work regarding our project. For MathDox, in order to evaluate a certain
mathematical formula in a CAS, several steps need to be taken by the Math-
Dox player for transforming the underlying formats of the document (DocBook,
OpenMath, MONET etc.) to HTML which embeds the result of the CAS query.

Interactive exercises have been developed by both ActiveMath [10] and Math-
Dox which rely on a user’s answer and a solution checker in order to return feed-
back to the user. In order to evaluate the user input, ActiveMath needs a CAS
to check for correctness and relies on one of the following: Yacas, Wiris-CAS
or Maxima. Still, the features provided by the JOBAD architecture are more
inclined towards modularity and client-side services that neither presuppose a
single backend nor a particularly powerful one, whereas the two aforementioned
projects are less modular (we are refering here at the addition of new services
by third party sources, which JOBAD can handle very well) and more of the
required computation is done on the server instead of the client.

3 Computer Algebra Services for JOBAD

The research in the field of CAS has received mass recognition in May 2009
when Wolfram|Alpha [30], a computational knowledge engine, was launched.
Wolfram|Alpha is based on two primary resources for the answers it provides
(as it is classified as being an “answer engine”), the Mathematica backend and
the knowledge base. Mathematica [20], whose 7th version was released in the
first quarter of 2009, is a well-known CAS, which provides many possibilities
in interacting with mathematical formulae. From a mathematical point of view,
the way Wolfram|Alpha works is that it always tries to return everything that
it knows about a certain formula (factorization, roots, plot) or already knows
about a certain formula (as one can see in Figure 1).

An integration of the services provided by Wolfram|Alpha with the JOBAD
architecture makes sense, as this would facilitate the users’ immediate access
to more information regarding the formulae that the user explores in a doc-
ument, thus providing, besides the already existing information services (e. g.
definition lookup), another way of acquiring background information regarding
the topic, thus making it easier for users to understand complex mathemati-
cal formulae. This data is instantly computable and is available for access via
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the Wolfram|Alpha website or via a webservice API specially designed for de-
velopers. Still, Wolfram|Alpha is only one example of a CAS, and the JOBAD
architecture should not be confined to only using this one. Another example of a
similar system with which JOBAD could interact are those CASs that deal with
OpenMath content and which can be reached via the SCSCP protocol [12].

The work envisioned with this project has two main parts that, in turn, regard
the improvement and extension of the already existing JOBAD architecture [9].
The idea is to develop another module for the already existent JOBAD architec-
ture that will allow the user to interact with more web-driven mathematics, via
the Wolfram|Alpha computational knowledge engine. The extension also regards
a generalized method of a “Send To” menu that will allow the user to select an
annotated MathML fragment (formula) and redirect it to some other sources of
information, in this case, a CAS, in particular, Wolfram|Alpha. Wolfram|Alpha
was chosen as an initiator for the “Send To” method, as this seems the most
useful, rational and complex choice for a user who wants to look up mathemat-
ical content on the web, as Wolfram|Alpha is also capable of plotting different
functions, identifying equations, terms etc. Still, this would only be the first use
case for the menu, as this can be further expanded and further destinations for
the “Send To” menu can be provided. This new extension, in theory, should work
with any CAS, the only constraint being the CAS and the mathematical content
in the document should have a common language — such as OpenMath —, or
that there should be a one-to-one mapping between these languages and that
there is a way to specify the desired operation to be performed by the CAS on
the user interface. The difference between Wolfram|Alpha and other CASs is
that Wolfram|Alpha will automatically return plots, derivatives, related formu-
las, while these, if supported, have to be explicitly asked for in the other CASs.
This functionality needs to be embedded in the respective service GUI elements
and will have to be adjusted per CAS. In Figure 2 you can see an updated dia-
gram of the entire JOBAD architecture, with the components in red being the
ones to be added (also, the proxy will be redesigned).

Another improvement of the architecture comprises modifications to the user
interface that, right after the document has been loaded and JOBAD will come
in to place, it will display a notification on the page that will allow the user to
select the necessary and wanted services available for the respective document.
Then, the data will be stored for later access so that each and every time the
user will display the document again, the offered services are seamlessly loaded
and the document is prepared for interaction according to the user’s preferences.

4 Wolfram|Alpha in JOBAD

The steps required for the extension of JOBAD are related to two important
tasks, first, querying the CAS system (in this case the Wolfram|Alpha engine)
and as for the improvement of the user interaction, retrieving the results from
the system and displaying them for the user.
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Fig. 1. Wolfram|Alpha results for “subset”
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Fig. 2. JOBAD architecture

4.1 Querying Wolfram|Alpha

In the initial phase of the project, there were two ideas around which the re-
trieving of data revolved. First of all, there was the brute force way, query the
Wolfram|Alpha website, wait for it to load (as it contains a lot of JavaScript and
AJAX requests) and retrieve the desired content from the webpage via XPath or
other means of accessing XML fragments and display it in the associated dialog
box. Still, there were some issues regarding this:

– The Wolfram|Alpha website only provides instant results image-wise. The
images are generated on-the-fly and then deleted shortly after the AJAX
request has been completed; therefore, there was no way to return the images
which are rather important in the case of functions.

– The results were displayed via JavaScript and AJAX, which means that
retrieving the loaded page through our proxy (which is needed to circumvent
security restrictions; see below) would be hard, if not impossible.

– One can not set the content of the retrieved results which is, by default
images, even for mathematical formulae.

– Further content cannot be retrieved or filtered (we are interested in retrieving
the meaning of the formulas, not just the graphical representation)

The Wolfram|Alpha service provides a web-based API for clients to integrate
the computational and presentation capabilities of Wolfram|Alpha into their own
applications or web sites. The Wolfram|Alpha webservice allows one to query the
database as if one were to query the actual website, but allowing for specifying
the type of desired information more exactly, and providing additional function-
ality. As the above solution seems infeasible for an automated client, we have
applied for and obtained a grant for research purposes on the Wolfram|Alpha
architecture, which consists of a Wolfram|Alpha API key. Regarding the extra
functionality provided by the API, the output of the Wolfram|Alpha webservice
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can be filtered according to the developer’s wish in order to better accommodate
the needs of the user. The filtering regards the various possible representations
of the result, providing options for visual representations (e. g. images, HTML,
PDF) or textual representation (e. g. plain text, Mathematica syntax, an XML
encoding of the Mathematica syntax called ExpressionML [8] etc.). Once there
is one possible way to query the Wolfram|Alpha engine, the only problem that
still remains is establishing a common language for the interaction between our
document and Wolfram|Alpha.

As Wolfram|Alpha does not support querying mathematical content via se-
mantically enriched MathML (Content MathML) or OpenMath, one is required
to query the engine via other mechanisms, this being the first important step
towards querying the knowledge base. The common syntax for querying seems
to be the Mathematica language which is familiar to the Wolfram|Alpha engine,
as it relies on a Mathematica backend, therefore requiring a translation from the
existing Content MathML and OpenMath standard served by the server (in our
case TNTBase) to Mathematica. We are aware of existing transformations be-
tween OpenMath and Mathematica, e. g. on the server as a part of the MathDox
infrastructure [18, 5], or on the client as a part of the Sentido formula editor [11],
and have decided to use the MathDox infrastructure for translation.

Also, taking into consideration the limitations of JavaScript, we will need
to set up a proxy in order to access Wolfram|Alpha, as JavaScript code is not
allowed to provide data unless it comes from the same domain (“Same Origin
Policy”) [21]. The purpose of the proxy will be to only prepare a request for
forwarding to the Wolfram|Alpha server and, when the data is available, to
provide it back to the JavaScript client, given that the key that we received
from Wolfram|Alpha may not be exposed and will be stored in the proxy. Also,
depending on the nature of the data, the proxy might alter the structure of
the retrieved document in order to save post-processing on the client side. The
purpose of the proxy is to interact with the “outside world” of the application,
retrieve necessary content, fit it together nicely and then return it to the user.
Given the choice of different formats in which Wolfram|Alpha can return the
result, there are two possible ways of presenting the information retrieved from
Wolfram|Alpha on the client: embedding it as parallel presentation and con-
tent markup (i. e. Presentation MathML annotated with Content MathML or
OpenMath) into the original document, thus effectively rewriting formulae in
the document, or simply displaying it for the user’s information.

The communication flow required for rewriting expressions is vizualized in
Figure 3. The test case for the integration of Wolfram|Alpha services into JOBAD
was the previously mentioned lecture notes which are usually displayed in MathML
(Presentation) and also have content annotations in OpenMath. As the annota-
tions are made up to a per symbol level, it is easy for the Wolfram|Alpha service
of the JOBAD architecture to find the associated OpenMath representation of
the selected expression and make an HTTP POST request to the proxy which
runs on the same domain and port (due to the “Same Origin Policy”). The proxy
will then determine if the content is OpenMath and, in this case, will send a
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Fig. 3. Proxy architecture for content-math oriented tasks

20



request to a webservice running on the MathDox [19] website which will trans-
late the OpenMath content to a Mathematica expression. As Wolfram|Alpha is
based on Mathematica (the plots, expansions, etc., are computed via Mathe-
matica), the Mathematica language is easier to understand by the engine and
the computed results are more relevant to the search, as no Natural Language
Processing (NLP) techniques need to be employed to transform the input (e. g.
on a basic level, an input as “Sqrt[x]” might produce more relevant results than
“square root of x”; for this simple test case, the results are identical, but for more
complex queries, NLP processing might not work). So, the converted OpenMath
expression is then passed to Wolfram|Alpha for evaluation in two steps: the first
request is for Mathematica output (a representation of the formula in Mathemat-
ica language) and is directed towards the content and meaning of the formula,
while the second request is sent in order to retrieve pictures and a Presentation
MathML representation of the results.

Given that the first query was successful (which can be easily verified in the
result of Wolfram|Alpha query), the system should proceed in transforming the
retrieved Mathematica content to a displayable form (Presentation MathML),
while still preserving the associated content annotation. For this, the following
possibilities have been investigated:

– NB2OMDoc: Developed by Klaus Sutner NB2OMDoc [26] is a Mathematica
package that is able to transform Mathematica code (version 4.2, latest ver-
sion is 7) to OMDoc (an early draft of version 1.2). The disadvantages of this
system would be that it requires Mathematica to be installed on the proxy
computer and that it is designed for an old format of both Mathematica
and OMDoc. In adition to that, one would have to transform (render) the
OMDoc content to Presentation MathML with OpenMath annotations, a
step to be executed by TNTBase and its embedded renderer from the JOM-
Doc library [14], a Java API for OMDoc documents (and illustrated in the
picture).

– Mathematica web service: As pointed out here in the Mathematical online
tutorial1, Mathematica is capable of exporting its formulas to both Con-
tent and Presentation MathML. So, one can design a web service that would
start Mathematica, input a formula, convert it to MathML and then retrieve
the result. This is not feasible, as the Mathematica files (with extension nb)
have a proprietary format and extracting content from that file is not easy.
Also, another drawback is that one would have to start Mathematica each
time (as we are not aware of a Mathematica daemon) which, even on a new
computer, takes more than 10 seconds which makes a webservice not user
friendly. An example in this area is WITM [29], Web Interface to Mathemat-
ica which provides a Mathematica interaction inside the browser. Still, the
main constraint is that WITM (and similar attempts) is intended to allow a
small number of licenced users access to Mathematica kernels remotely, but

1 http://reference.wolfram.com/mathematica/XML/tutorial/MathML.
html
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not simultaneously (a large number of users might mean interference in the
result)

– Sentido formula editor : Developed by Alberto González Palomo as part
of the Sentido [25] editor, browser and environment for OMDoc, it is a
JavaScript extension that allows the translation between different mathe-
matical formulae representation formats. This would mean that all the trans-
lation between the different formats (Mathematica to OMDoc) should be
done on the client side. The drawbacks of using this method is that the en-
tire library is necessary for this and there seems to be no interface to just
transform between the different formats, bypassing the other functionality.

Since each of the methods presented above has its own (major) drawbacks
and would require more time to integrate, we consider the integration of a Math-
ematica to OpenMath/OMDoc/MathML translator as future work.

4.2 Displaying the results

Once the data is retrieved in a displayable format (images, Presentation MathML,
rendered MathML from Mathematica), it needs to be displayed. Following the
design pattern used before in the definition lookup service, we decided to use
the same jQuery UI [15] widget that allows the developer to populate a dia-
log window with content, in this case the results provided by Wolfram|Alpha,
translated from their XML representation to XHTML. The expansion is made in
place, where the user clicked and allows the user to move the dialog around (ex-
amples can be viewed in Figures 4 for definition lookup, 5 for the module loading
utility and 8 for the Wolfram|Alpha lookup). An alternative that is appropriate
for some types of queries and results is rewriting mathematical expressions in
place, which JOBAD so far does for the results of unit conversions [9].

4.3 Preserving Document Settings

The last part of this project regarded the extension of the interface with another
service that allows the dynamic loading of other services, thus providing even
more freedom of configuration on the user side, leading towards more personal-
ized active mathematical documents.

This extension first adds a text at the top of the document (“Click me to
configure the loaded modules”) and uses the same jQuery UI dialog (as one can
see in Figure 5), only that this time, the dialog is made modal: everything else
except the dialog is grayed out and it does not allow access to the underlying
document until either the form is confirmed (via the Ok button) and the neces-
sary modules are loaded or the dialog is closed via the x button. In addition to
that, we imagine students that might access a document or documents on the
same domain for multiple times and having to load the same modules over and
over might become irritating and annoying. Therefore, in addition to loading
the necessary services, this module also stores the loaded services in a cookie
for further usage and each time a page is loaded, the cookie is retrieved and the
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Fig. 4. Definition Lookup Example

modules that have been loaded at the last access of the web page are loaded
again. The list of available services is not static, but rather dynamic and each
time the top of the page is clicked, a request is sent to the server, asking for the
available services. This can be further expanded in a server-side saved user pro-
file that can be used in other projects as the adaptive document browser panta
rhei [24, 22].

5 Example test case

In the following section we present an example workflow for a test document.
The user arrives at the test document and no services (besides the service loading
system) are loaded, resulting in no obvious functionality. Once the user clicks the
top of the page text which allows the loading of additional modules, a request is
sent to the server asking for the available services, the dialog is populated and
pops up and allows the user to check the wolframalpha checkbox (see Figure
5). Once both the wolframalpha and the additional folding services are loaded,
the user proceeds to the document and after each right click is presented with a
contextual menu, dynamically created for that document element. Assuming the
user would right click on a mathematical fragment which is

√
x, with the associ-

ated XHTML fragment presented in Figure 7 which contains both Presentation
MathML and annotations in OpenMath format, he would then receive a visual
confirmation of his action via a context menu, as one can see in Figure 6. If a
user were to access the Wolfram|Alpha website and search for the Mathematica
representation of the OpenMath fragment, in this case Sqrt[x], the result page
would look like Figure 9. After the request is processed, the Wolfram|Alpha
content is retrieved on the client side and the user will experience something
resembling Figure 8.
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Fig. 5. The user loads the wolframalpha service

Fig. 6. The user performs a right on the
√

x symbol

Fig. 7. The Presentation MathML and the associated OpenMath content annotation
representations of

√
x
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Fig. 8. Part of the Wolfram|Alpha results embedded into the original document (The
question marks in the MathML formulae result from Wolfram|Alpha using a wrong
character encoding; we are working on a workaround for that.)
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Fig. 9. Part of the Wolfram|Alpha website search results for Sqrt[x]
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5.1 Extending the Wolfram|Alpha interface to other CASs

This section of the project represents more of a further research topic. While
Wolfram|Alpha is very competent, the amount of information it provides might
not be adequate for other services or facilities or might not be detailed enough,
thus requiring a more involved or specialized CAS. Some things also to keep in
mind are the efficiency of the CAS, as this will have a great impact on the users,
and the licensing of the CAS (the Wolfram|Alpha API is not freely accessible
and requires licensing). Therefore, instead of using Wolfram|Alpha for simple or
very specific computations, one can use a locally installed CAS or just another
CAS that handles things better and/or faster than the webservice provided for
Mathematica. Still, as presented before, Wolfram|Alpha is only a specialized
application of JOBAD’s “CAS” service, as this feature could be implemented
for any existing webservice, given that there is a common interaction language
between the MathML/OpenMath formulae in the documents and the CAS. How-
ever, given that Wolfram|Alpha can accomplish much more than a simple CAS,
as it also relies on an index for words and that its output is a bit different from
the one of a CAS (which is punctual), a transition from Wolfram|Alpha to a
simple CAS might be a bit more involved and will require some further inves-
tigations both in terms of CASs and in terms of integration with the JOBAD
architecture.

6 Conclusion and Future Work

We have presented the design and first implementation steps for an integra-
tion of CAS services into the JOBAD architecture for interactive mathematical
documents. Specifically, we provide a service that lets users interact with the
Wolfram|Alpha web service API. Its final version will permit users to send sym-
bols or entire annotated mathematical formulae for evaluation to a CAS, the
result of which will be displayed contextually.

We will evaluate the CAS module for JOBAD using the existing integration
of JOBAD with the first-year undergraduate computer science course taught at
Jacobs University, whose slides and lecture notes are written using the LATEX
package sTEX. sTEX documents are automatically converted into OMDoc [16]
documents and from there into JOBAD-enabled XHTML+presentation/content-
MathML documents [7]. Thus, students will be able to interact withWolfram|Alpha-
generated content.

In future work, we will extend the architecture to other CASs. This will also
act as a simple integration platform between CASs as results received from one
system can be sent to another one. Similarly, the current design can be extended
to theorem provers where, instead of querying the service for the simplification
of an expression, we query for a proof of a theorem. This could be the first step
to a document-centric integration of theorem provers both among each other
and with CASs.
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